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Two-dimensional laminar flow of an incompressible viscous fluid through a channel
with a sudden expansion is investigated. A continuation method is applied to study
the bifurcation structure of the discretized governing equations. The stability of
the different solution branches is determined by an Arnoldi-based iterative method
for calculating the most unstable eigenmodes of the linearized equations for the
perturbation quantities. The bifurcation picture is extended by computing additional
solution branches and bifurcation points. The behaviour of the critical eigenvalues
in the neighbourhood of these bifurcation points is studied. Limiting cases for the
geometrical and flow parameters are considered and numerical results are compared
with analytical solutions for these cases.

1. Introduction
Two-dimensional, laminar flow of an incompressible, Newtonian fluid in a sym-

metric, sudden expansion has been the subject of several previous investigations.
Experimental results have been reported by Cherdron, Durst & Whitelaw (1978),
Durst, Pereira & Tropea (1993) and Fearn, Mullin & Cliffe (1990) for expansion
ratios D between the outlet and inlet heights of 2:1 and 3:1. At sufficiently low
Reynolds numbers Re the experiments report a steady, symmetric flow with two
recirculation zones of equal size in the corners of the expansion. The length of these
recirculation zones increases with increasing Reynolds number.

Even in the creeping flow limit, there must be recirculation zones, called Moffatt
vortices, at the corners. These have been largely ignored in previous studies on sudden
expansion. Using high-resolution numerical schemes (i.e. successive grid refinement)
Collins & Dennis (1976) have tracked these weak viscous eddies in curved, triangular
ducts. They are of minor consequence in determining the nonlinear structure of
the solutions, but an important indicator of the numerical accuracy as the size and
strength of these vortices are very small and they do not reveal themselves readily
in numerical calculations. We compare our numerical solutions with the analytical
results of Moffatt (1964) to serve as validation of our choice of the number of grid
points and the grid distribution.

For higher Reynolds numbers, the experiments reveal the symmetric flow yielding
gradually to a pair of stable, asymmetric flows, which retain the two-dimensional,
stationary character. The two recirculation zones in these flows achieve different
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lengths. The values of the Reynolds number for the onset of asymmetric flows,
reported by experiment, scatter over a wide range: for example Cherdron et al. (1978)
report the transition to occur at Re = 185 based on the maximum inlet velocity and
the corresponding inlet channel height for an expansion ratio of 2 : 1, while Durst
et al. (1993) report the critical value to be around Re = 125 for the same expansion
ratio, when Re is based on the maximum inlet velocity and the inlet height. For
Re > 600 the flow eventually becomes transient and quantitative experimental data
on the frequency vs. Re is available in both Cherdron et al. (1978) and Fearn et
al. (1990) on such transient flows.

In a definitive study, Fearn et al. (1990) show, using both numerical and experimen-
tal tools, that at a certain critical Reynolds number (which depends on the expansion
ratio) the unique, symmetric solution bifurcates supercritically at a pitchfork point;
the symmetric solution loses stability at this singular point and a pair of stable, asym-
metric solutions emerge. Since the symmetry-breaking point is structurally unstable,
the presence of even a slight degree of asymmetry in the experiments or the numer-
ical model makes the transition between the symmetric and non-symmetric solution
appear as a smooth one, with the second non-symmetric solution being disconnected
from the primary branch. The pitchfork unfolds into a limit point which is very
sensitive to such slight imperfections in experiments or computations. Their study
reaffirms the other, earlier observations concerning transition between the symmetric
and non-symmetric flows and it clarifies the reason for the sensitive nature of the
singular point in both experiments and computations.

Shapira, Degani & Weihs (1990) consider a gradual expansion with a constant
slope of angle α in the expansion zone. They discuss stability issues, but make
no attempt to determine the structure of the many stationary solutions beyond the
first bifurcation point. Instead they rely on direct simulation (or integration) of the
linearized, transient, two-dimensional equations to determine the stability of two-
dimensional base flows. The novel feature in their work is the manner in which the
stability of the least-stable mode is determined, using an energy-based method. In
their work there is no evidence of multiplicity of stable, non-symmetric solutions, nor
of any further limit points on the non-symmetric branches.

In yet another seminal work, Sobey & Drazin (1986) explore the connection between
the bifurcation structure of Jeffery–Hamel flows (JH flow: the two-dimensional flow
of given rate Q and Reynolds number Re = Q/ν in a wedge of angle 2α from a
source or sink in its edge) and the flows in a periodic, plane channel with a smooth
expansion and contraction. Results from the bifurcation theory are rigorously applied
to the JH flows and their stability is determined from a model problem derived from
the JH flows, instead of solving the complete eigenvalue problem. For the channel
flows, a direct, time-dependent numerical simulation was used which permits access
to all stable solution branches as well as any time-periodic solutions, but cannot
reveal the solution structure of any unstable solutions. The bifurcation diagram for
the channel flow is more complicated than in other studies. The essential findings in
their work are: (a) while in the channel flow the first bifurcation point, with Re as
bifurcation parameter, is supercritical, in the JH flow (at a fixed α) it is subcritical; (b)
additional limit points on the asymmetric solution branches of the channel flow are
uncovered and bracketed by extensive numerical simulations. The relevance of the
work of Sobey & Drazin (1986) in the present context arises from the fact that the
JH flows can be looked upon as limit configurations of sudden or gradual expansion
flows (expansion ratio D →∞).

In the present paper we explore the bifurcation structure of the steady solution
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Figure 1. Two-dimensional duct with a sudden expansion.

manifold of two-dimensional sudden expansion flow in detail by numerical methods.
Finite difference approximations of the equations of motion in the stream function–
vorticity form are constructed. A suitable stretching transformation is used to cluster
the grid points near the walls and corners. The sensitivity of the solution to different
types of approximations for the vorticity boundary conditions on the wall and corner
points, as well as at the outlet, is examined. The Newton method provides access to
the Jacobian and hence makes possible the computation of eigenvalues to determine
the linear stability; a continuation method with branch switching (Allgower & Georg
1990) allows us to compute both stable and unstable branches. Arnoldi-based iterative
methods are used to track the variation of the eigenvalues of the least-stable modes
with respect to Reynolds number. Yet another motivation was a recent numerical
study (Teschauer 1994) using a commercial code FIDAP, where evidence of a second
pair of non-symmetric solution branches was found, suggesting the presence of a
second bifurcation point on the unstable, symmetric solution branch for an expansion
ratio of 1 : 2. This and other bifurcation points have the same location to within
2 ∼ 4%. Although the bifurcation structure of the stationary solutions has some
similarity with that found in the Taylor–Couette flow (Pfister et al. 1987) for a short
annulus, the stability picture is quite different.

The variation of the solution manifold with the expansion ratio D is tracked,
with an attempt to extrapolate to D → ∞ by a computation for D = 1000 and by
comparisons with the submerged jet and the JH flow. Whereas the classical Bickley
jet turns out to be an unsuitable limit for the present problem, the numerical solution
for D = 1000 (and Re = 1) shows good agreement with the JH flow for α = π/2.

2. Problem formulation
Figure 1 shows the geometry of the channel being considered. It is characterized

by the expansion ratio

D =
d2

d1

(2.1)

and the expansion asymmetry

a =
h1 − h2

d1

, (2.2)

which can be used to model slight asymmetries occurring in an experimental arrange-
ment. The lengths of the entrance and outflow regions, L1 = l1/d1 and L2 = l2/d1

respectively, have to be chosen sufficiently long so that the flow profiles far away
upstream and downstream can be regarded as fully developed. Using d1 as the length
scale, there are four dimensionless geometrical parameters (D, a, L1, L2). While D and
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a have profound influence on the flow and bifurcation structure, L1 and L2 have
much less influence as long as they are sufficiently large.

The spatial variables x and y are normalized by d1 and the velocity vector u =
(u, v) is scaled with the maximum velocity u0 at the inlet. The steady flow of an
incompressible viscous fluid is governed by the continuity equation

∇ · u = 0 (2.3)

and the Navier–Stokes equation

(u · ∇) u = −∇p+
1

Re
∇2u (2.4)

where p is the non-dimensional pressure. The Reynolds number is defined by

Re =
u0 d1

ν
(2.5)

where u0 is the maximum velocity at the inlet and ν is the kinematic viscosity. The
condition u = 0 is imposed at solid walls and a fully developed one-dimensional
Poiseuille flow

u(y) = ((1− 4y2/d 2
1 ), 0)T (2.6)

is assumed on the inlet. The Reynolds number is given as

Re =
3

2

Q

ν
, (2.7)

in terms of the flow rate Q = 2
3
u0d1 per unit channel width. The outflow boundary

conditions will be discussed later.
In the special case h1 = h2, i.e. a = 0, the duct possesses a reflection symmetry

about the centreline y = 0. Equations (2.3) and (2.4) and the boundary conditions
are invariant under the transformation

y → −y
v → −v (2.8)

with the other quantities left unchanged. Hence, if (u(x, y), v(x, y)) represents a
solution of (2.3)–(2.4), then the mirror image (u(x,−y),−v(x,−y)) is a solution of the
governing equations as well. In particular symmetric solutions are characterized by(

u(x, y)
v(x, y)

)
=

(
u(x,−y)
−v(x,−y)

)
. (2.9)

As a consequence of this symmetry, only symmetric solutions may appear alone,
whereas asymmetric solutions have to appear in pairs.

3. Numerical solution
For a two-dimensional problem a velocity field

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (3.1)

induced by a streamfunction ψ, satisfies the continuity equation (2.3). Eliminating the
pressure terms in the Navier–Stokes equations results in the vorticity equation

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
=

1

Re
∇2ω (3.2)
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where

ω =
∂u

∂y
− ∂v

∂x
. (3.3)

The streamfunction and vorticity are related by

ω = ∇2ψ. (3.4)

The boundary conditions for the streamfunction are

ψ = ± 1
3

(3.5)

on the solid upper and lower walls respectively and

ψ(y) = y − 4
3
y3 (3.6)

at the inlet. Roache (1972) proposes different outflow boundary conditions such as

∂ψ

∂x
= 0 (3.7)

or
∂2ψ

∂x2
= 0. (3.8)

For the vorticity ω, boundary conditions on a solid wall do not exist. But since the
no-slip condition also yields the normal derivative of the streamfunction ∂ψ/∂n = 0,
this can be used to derive approximate boundary conditions for ω. Various first-
and second-order-accurate finite difference approximations for the vorticity at a solid
surface are given by Roache (1972), using the values of ψ and ω at one or two interior
points (w + 1 and w + 2 respectively) close to a wall point w. A Taylor expansion of
ψ on the solid wall together with the no-slip condition for the velocity gives

ωw =
2(ψw+1 − ψw)

∆n2
+ O(∆n) (3.9)

up to first-order terms in ∆n denoting the normal distance of point w + 1 from w.
Extending this expansion to higher-order terms, the following second-order-accurate
equation can be obtained:

ωw =
3(ψw+1 − ψw)

∆n2
− 1

2
ωw+1 + O(∆n2). (3.10)

Another approach is to use a third-order polynomial interpolation of the streamfunc-
tion near the wall, yielding

ωw =
−7ψw + 8ψw+1 − ψw+2

2∆n2
+ O(∆n2), (3.11)

for the vorticity, which also has a second-order truncation error. At the sharp convex
corner of the sudden expansion at x = 0 a unique boundary value for the vorticity
does not exist. Roache (1972) recommends using multiple values as well as using a
unique value obtained by interpolation. The condition

∂ω

∂x
= 0 (3.12)

for the vorticity is imposed on the outflow boundary. Calculations using different
approximations for boundary and outflow conditions have been carried out in order
to make sure that the choice of these conditions does not influence the solution
structure significantly.
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Figure 2. Mesh for the sudden expansion flow.

The equations of motion (3.2) and (3.4) are discretized using a five-point finite
differencing scheme. Stretching transformations are used to generate a cluster of
grid points in regions of flow where sharp changes in the flow field are expected
(see figure 2). Discretizing the equations for the change gives the nonlinear algebraic
system

H(ψi, ωi,Re, D, a, L1, L2) = 0, i = 1.., N, (3.13)

with unknowns (ψi, ωi) in the N grid points. The system additionally depends on
several parameters, such as Re or a. In order to study the structural changes in the
solution manifold with the variation of these parameters, a continuation method is
applied which exploits the smooth dependence of the solutions on them.

In the present work the arclength predictor–corrector method described by Allgower
& Georg (1990) is used. The sparse linear system of equations arising from the
Newton–Raphson iteration in the corrector step is solved by LU decomposition using
the package SPARSPAK (Chu et al. 1984). The advantage of a direct solver lies in
the fact that the determinant of the Jacobian of (3.13) which changes sign at turning
and simple bifurcation points can be conveniently obtained as a byproduct of the
factorization and used as an indicator for these points.

4. Linear stability
In order that a flow described by the governing equations is observed in nature or

experiment it has to be stable under small perturbations. To investigate the stability of
the various configurations for the channel flow obtained by solution of the equations
(3.2), (3.4) or (3.13), a linear stability analysis is carried out. The configuration of the
steady basic flow (Ψ,Ω) is perturbed by small time-dependent quantities:

ψ̃(x, y, t) =Ψ (x, y) + ψ(x, y, t),
ω̃(x, y, t) =Ω(x, y) + ω(x, y, t).

}
(4.1)

For an infinitesimally small perturbation, the equations of motion can be linearized:

Ψx

∂ω

∂y
+ Ωy

∂ψ

∂x
−Ψy

∂ω

∂x
− Ωx

∂ψ

∂y
+

1

Re
∇2ω=

∂ω

∂t
,

ω − ∇2ψ= 0.

 (4.2)

The linearized problem is now solved for ψ(x, y, t) and ω(x, y, t) using a normal mode
decomposition:

ψ(x, y, t) = ψ̂(x, y) eσt,
ω(x, y, t) = ω̂(x, y) eσt.

}
(4.3)

with a complex eigenvalue σ and eigenvectors ψ̂(x, y) and ω̂(x, y). Substituting ansatz
(4.3) into (4.2) and discretizing leads to the generalized algebraic eigenvalue problem

J(Ψ,Ω) y = σMy. (4.4)
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The matrix J represents the Jacobian matrix of (3.13) evaluated for the basic flow
and M is a singular diagonal matrix arising from the right-hand side of (4.2).

The basic flow (Ψ,Ω) is infinitesimally stable if Re{σ} < 0 holds for all eigenvalues
σ of (4.4), i.e. if all perturbations in (4.1) will decay with time. If there is at least one
eigenvalue with Re{σ} > 0, the corresponding eigenmode (4.3) will grow as t → ∞
and the basic flow is unstable. In the context of a bifurcation analysis the dependence
of σ on a parameter like Re is of interest.

Some conclusions on the stability of a flow configuration can already be drawn
from a sign change of det{J}, mentioned in §3, without explicitly looking at the
spectrum of (4.4). At a turning point or a simple bifurcation point the principle
of exchange of stability applies for a stable flow (Keller 1987): a real eigenvalue of
equation (4.4) passes through σ = 0 from σ < 0 (stable flow) to σ > 0 (unstable flow),
thereby a change of sign in det{J} occurs.

However, if the solution is already unstable or if a pair of conjugate-complex
eigenvalues crosses the imaginary axis (Hopf bifurcation), the sign change of det J
alone does not give sufficient information about an exchange of stability. For these
cases it is necessary to calculate at least the rightmost part of the spectrum of (4.4).
An effective algorithm for this purpose is a shift-and-invert method combined with
the Arnoldi algorithm for calculating parts of the spectrum (Natarajan & Acrivos
1993; Saad 1992). The generalized eigenvalue problem (4.4) is transformed into a
standard eigenvalue problem

(J − τM)−1My = σ̂y (4.5)

with a complex shift parameter τ. The eigenvalues σ̂ are related to those of (4.4) by

σ̂ =
1

σ − τ . (4.6)

This standard problem is then solved by a restarted, iterative Arnoldi method which
essentially is a sophisticated extension of the power iteration method and allows a
number of eigenvalues σ̂ of largest magnitude to be calculated (Saad 1992). By
transformation (4.6) these are the eigenvalues σ of equation (4.4) closest to the shift
τ.

The explicit calculation of the inverse matrix (J − τM)−1 in the matrix vector
products z = (J− τM)−1Mx which are repeatedly required by the Arnoldi method for
a given x can be avoided by using the LU-decomposition of (J − τM) and solving

(J − τM)z = Mx (4.7)

for z. This requires only the matrix–vector productMx and one forward and backward
substitution in the factorized system. For a real shift τ this can be done efficiently
by SPARSPAK. A useful implementation of the Arnoldi–method is provided by the
package ARPACK (Lehoucq, Sorensen & Vu n.d.) which was used in the present
work.

5. Moffatt eddies
Before proceeding to a detailed study of the flow patterns over a wide range

of Reynolds numbers, the limiting case Re = 0 will be considered. In this case
recirculation zones of finite size are known to remain in the corners of the expansion
(see figure 3). The analytical work of Moffatt (1964) shows that an infinite sequence
of closed eddies of decreasing strength exists near a sharp corner with an angle
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Figure 3. Moffatt eddies in the corners of the sudden expansion
(Re = 0, D = 2, a = 0, L1 = 2, L2 = 40).
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2α < 146◦. These have come to be known as Moffatt eddies, and they represent
a solution of (3.2) and (3.4) for Re = 0. Moffatt (1964) derives an expression in
polar coordinates with origin in the corner for the lowest-order term of the complex
streamfunction:

ψc(r, ϑ) ≈ K rλ (cos((λ− 2)α) cos(λϑ)− cos(λα) cos((λ− 2)ϑ)) (5.1)

which obeys

ψc(r,±α) = 0,
∂ψc

∂ϑ
(r,±α) = 0, (5.2)

since the complex value of λ is fixed by

λ tan λα = (λ− 2) tan(λ− 2)α. (5.3)

In the case of a sudden expansion 2α = π/2 holds. The complex coefficient K has
to be determined by matching the real part of (5.1) with the flow far away from the
corner. In the present paper this has been done by using one value of the numerically
obtained streamfunction both above and below the separation streamline.

In figure 4 the appropriately normalized asymptotic approximation of the flow in
the lower corner is compared with the numerical solution for the expansion ratio
D = 2 at different locations x. The numerical results agree well with the analytical
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Figure 5. Asymmetric solution for Re = 550. xu is the position of the reattachment point on the
upper wall and xl on the lower wall (D = 2, a = 0, L1 = 2, L2 = 40).

solution (5.1) for the corner eddies. With the grid size used in this work only the first
corner eddy could be resolved numerically for Re = 0. Moffatt (1964) demonstrated
that even for finite Reynolds numbers the flow in a sufficiently small neighbourhood
of the corner can still be described by the creeping flow approximation. As the
Reynolds number increases the size of the corner eddies also increases, the first and
biggest one representing the main recirculation zone. For higher Reynolds numbers,
this first recirculation zone induces a cascade of smaller Moffatt eddies of which two
could be resolved numerically in the present work.

6. Bifurcation analysis
In this section the application of the above-mentioned numerical algorithms to study

the flow in a plane channel with a sudden expansion will be described. Calculations
were carried out first for a fixed expansion ratio D = 2 and the influence of the
parameters of the numerical model such as mesh size or boundary conditions was
studied. The dependence of the solutions on the expansion ratio D were then
investigated and finally the limit case D →∞ has been considered.

6.1. Flow at expansion ratio D = 2

In order to have a quantitative measure for the characterization of a flow configu-
ration, particularly of its asymmetry, and to illustrate the many flow configurations
in a convenient way graphically, an appropriate functional has to be chosen. The
x-coordinates of the reattachment points of the corner recirculation zones on the
upper and lower walls are convenient choices for such a functional, since they can
be determined quite easily (figure 5) and their difference ∆x = xu − xl clearly is an
indicator of asymmetry in the flow.

The results of the numerical calculations for D = 2 on a 200× 100 mesh are shown
in figure 6. In the range 0 < Re < 800 two symmetry-breaking pitchfork bifurcations
were detected at Re c1 = 218 and Re c2 = 542. For Re < Re c1 there is a unique,
symmetric and stable flow configuration (with ∆x = 0). This configuration loses
stability at Rec1 = 218. The critical Reynolds number found for this first bifurcation
point agrees well with the experimental and numerical results by Shapira et al. (1990)
and Teschauer (1994).

Continuing the unstable symmetric solution to higher Reynolds numbers, a second
bifurcation point was found at Re c2 which has not been reported before. At this
bifurcation point the sign change of det{J} alone is not sufficient to indicate whether
the symmetric solution regains stability by crossing it, i.e. the positive eigenvalue
crosses the origin back into the left complex half-plane again, as e.g. observed in
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Figure 6. Bifurcation diagram for the sudden expansion flow. Expansion ratio
D = 2, a = 0, L1 = 2, L2 = 40, and 200× 100 grid points.

Taylor–Couette flow (Pfister et al. 1987), or whether it remains unstable, i.e. a second
eigenmode becomes unstable.

A more detailed stability picture of the various symmetric and asymmetric branches
of figure 6 is obtained by calculating a set of least-stable modes corresponding to
the rightmost eigenvalues of the spectrum of equation (4.4). Figure 7(a, b) shows
the transition to instability due to bifurcation for the symmetric solution. For
Re = 210 < Re c1 all eigenvalues are in the left half-plane and the solution is stable.
With increase of the Reynolds number the rightmost eigenvalue moves to the right
and crosses the origin of the complex plane at Re c1. For Re > Re c1 this eigenvalue is
positive, i.e. the mode associated with this eigenvalue grows in time.

On increasing the Reynolds number further, a second eigenvalue of the symmetric
solution moves to the right and crosses the origin at Re c2 = 542, leading to a second
unstable mode. In figure 7(c, d) the relevant parts of the spectrum of the symmetric
solution are shown for Re = 540 < Re c2 and Re = 560 > Re c2. The results indicate
that the symmetric solutions remain unstable beyond the second bifurcation point.
Also the asymmetric solutions of the second bifurcation point are unstable (figure 7e),
so that from this point no physically observable two-dimensional flows originate.

The asymmetric solutions arising from the first bifurcation point are stable. In the
experiments these solutions become unstable and time periodic at higher Reynolds
numbers (Re ≈ 625, Durst et al. 1993) and the existence of a Hopf bifurcation on the
asymmetric branch was postulated. The behaviour of the rightmost eigenvalue was
traced up to Re = 800 (figure 7f) and the asymmetric solutions were found to be stable
to the two-dimensional perturbations applied, in agreement with the numerical results
for two-dimensional flow of Fearn et al. (1990). In their work a transition to time-
periodic flow via three-dimensional effects was observed experimentally. Streamline
plots of the solution on the symmetric branch and upper part of the asymmetric
branch of the first and second bifurcation are shown in figure 8 at Re = 768.

A few remarks on the influence of the numerical model on the previous results
are in order. For studying the flow in a range of Reynolds numbers the lengths of
the inlet and outlet segments of the channel have to be chosen sufficiently long to
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Figure 7. Eigenvalues in the complex plane. Symmetric solutions: (a) Re = 210, (b) Re = 230,
(c) Re = 540, (d) Re = 560. Asymmetric solutions: (e) Re = 560 (2nd bifurcation), (f) Re = 800
(1st bifurcation). Shift λ = 0.

allow a fully developed flow at the outlet boundary and to avoid an influence of
the expansion region. A first estimation of the length of the outflow region is taken
from Schlichting (1968). The entrance length for a channel with uniform velocity
distribution is Le ≈ 0.035DRe, giving Le ≈ 56 for Re 6 800 and D = 2. Repeated
calculations at Re = 800 with different lengths of the outflow L2 showed that this
length could be reduced to L2 = 40 without affecting the location of bifurcation
points and separation lengths significantly, keeping the relative error of those values
less than 0.2% on a given mesh.

The global influence of the mesh size on the state functions is shown in figure 9.
The influence of the mesh size is maximal in a neighbourhood of a singular point
and, generally, increases with increasing Reynolds number.

The calculations were repeated on a refined mesh until the relative error of the
separation length and of the bifurcation points between two meshes was less than
1% in the range of Reynolds numbers considered. On the finest (200 × 100) mesh
different approaches for the approximation of ω on solid walls (3.9)–(3.11) and on the
convex corners of the expansion (multivalued vs. interpolation) were investigated as
well as different outflow boundary conditions (3.7)–(3.8). The relative error between
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different numerical boundary conditions was found to be less than 0.2%. Although
the influence of the mesh size and numerical boundary conditions on the bifurcation
diagram (i.e. the state function in its dependence on Re), is quite small, the impact
of grid refinement on the spectrum of the stability problem is dramatic, as expected.
Figure 10 shows for the spectrum of symmetric solutions at Re = 560 that the
three most unstable eigenvalues are sufficiently accurate on different grids, so that
there is no significant change in the stability picture. The influence of the numerical
boundary conditions on the relevant part of the spectrum is rather small and can be
neglected. The inner part of the spectrum, however, is much more sensitive to the
mesh size and is shifted as the grid is refined. A stronger grid dependence of the inner
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Figure 10. Influence of grid size and boundary conditions on the rightmost part of the spectrum.
Symmetric solution, Re = 560. 3, 12300 points, 2nd-order vorticity boundary condition +; 12300
points, 1st-order vorticity boundary condition; 2, 21500 points, 2nd-order vorticity boundary
condition.

part of the spectrum is mathematically expected from the increase of the degrees
of freedom implied by grid refinement. The fact that it appears relatively close to
the eigenvalue responsible for stability in this problem compared to other problems,
see e.g. Natarajan & Acrivos (1993), could be attributed here possibly to the steep
gradients of the vorticity near the convex corners. The vorticity changes significantly
in these regions when more grid points are concentrated there, even though the
solution is sufficiently accurate in all other parts of the channel. The singularity of
the vorticity at the convex corner implies significant changes in the Jacobian matrix
J in (4.4), eventually accounting for this grid dependence of the spectrum.

When an arbitrary, small geometric asymmetry of the flow domain (expansion
asymmetry a 6= 0) is introduced, the bifurcation picture changes qualitatively, as
depicted in figures 11(a) and 11(b) for the functionals xu and xl . The bifurcation
points unfold through the symmetry breaking, i.e. the branches intersecting at a
bifurcation point become disconnected. The situation is sometimes referred to as an
imperfect bifurcation. When the Reynolds number is gradually increased from small
values, the asymmetry ∆x of the flow increases smoothly, but with larger gradients in a
neighbourhood of the critical Reynolds number Re c for symmetric (perfect) geometry.
The sign of the asymmetry parameter a prescribes whether it is the recirculation zone
on the upper wall that grows while the lower one shrinks or vice versa.

The symmetry-breaking bifurcation point unfolds to a simple turning point on the
disconnected lower branch in figure 11(a) (upper branch in 11b accordingly) with
the lower part of this branch being stable, corresponding to the lower asymmetric
branch of the symmetric geometry. The upper part emerging from the turning point
is unstable due to the principle of exchange of stability. The asymmetry influences
the second bifurcation at Re c2 = 542 in a similar way as the first one. In an
experiment small geometric imperfections always cause a bifurcation diagram similar
to figure 11 and disconnected stable branches can only be reached e.g. by starting the
flow impulsively at the appropriate Reynolds number or by temporarily introducing
artificial perturbations (Fearn et al. 1990). With increasing asymmetry the turning
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Figure 11. Dependency of the location xu (a) and xl (b) of the reattachment points on the upper
and lower wall respectively on Re for different expansion asymmetries a (location of xl and xu
according to figure 5).

points of the disconnected branches move towards higher Reynolds numbers and the
branch xu(Re) in figure 11 asymptotically reaches the case of a backward-facing step
(a = 1) with an expansion ratio 1 : 2 between inflow and outflow channel height,
while xl(Re) = 0 in this case.

Similar results to those in figure 11 could be obtained by introducing various kinds
of asymmetries into the algorithm such as e.g. an asymmetric distribution of grid
points. Inherent asymmetries of this kind in the numerical scheme account for the
imperfect bifurcations found by Durst et al. (1993) and Sobey & Drazin (1986).

6.2. Influence of the expansion ratio D

For increasing expansion ratio the symmetry-breaking bifurcation occurs at lower
Reynolds numbers. Figure 12 shows for ratios D = 2, 3 and 5 that the asymmetry of
the solutions, measured by ∆x, grows more rapidly at higher D and the curvature of
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Figure 12. Dependence of the bifurcation diagram on the expansion ratio:
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Figure 13. Dependence of the separation length xu on the expansion ratio:
D = 3 (——), D = 5 (– – –), D = 10 (· · · · · ·).

the asymmetric branches flattens near the bifurcation point. The distance between the
first and second bifurcation points decreases. Additional bifurcation points connecting
unstable branches have been found and the results suggest an infinite sequence of
such points for Re → ∞. The calculations however were confined to a range of
Reynolds numbers containing the first two points because in experiments the flow
becomes three-dimensional and transient for higher Re (Durst et al. 1993; Fearn
et al. 1990). Not only does the asymmetry ∆x of the solution grow more rapidly
with increasing D but also the separation lengths xu and xl (figure 13). The Moffatt
eddies, giving finite separation lengths for Re = 0 increasing with D in figure 13, have
already been discussed in §5.

Figure 14 summarizes the dependence of the critical Reynolds numbers Re c1 and
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Figure 14. Reynolds number of the 1st (——) and 2nd (- - - -) bifurcation points vs. reciprocal
expansion ratio 1/D.

Re c2 on the expansion ratio D. For D → 1 the Reynolds numbers of both bifurcation
points move rapidly towards high Reynolds numbers. In the case of Poiseuille flow
(D = 1) no symmetry-breaking bifurcation occurs, since the steady symmetric flow
becomes unstable due to a Hopf bifurcation. For increasing expansion ratio Re c1 and
Re c2 decrease. The calculations were done for expansion ratios up to D = 1000 and
for this ratio the bifurcation points were found at Re c1 = 8.5 and Re c2 = 11.2. The
results suggest that both Re c1 → 0 and (Re c2 − Re c1)→ 0 in the limit D →∞.

6.3. The limit case D →∞
For D � 2 the inlet height of the expansion can be considered small and the upper
and lower walls of the outlet infinitely far remote; the inlet thus represents a line
source discharging fluid into infinite semi-space. In this limit the flow can be treated
by analytical means around the inlet source. There are two approaches available in the
literature for dealing with this problem. The model given by Schlichting and Bickley
(Schlichting 1968) makes use of the boundary layer equation and the assumption of
a constant pressure imposed on the flow by the surrounding fluid. This assumption
results in a constant momentum flux and an increasing mass flux in the x-direction.
This model covers only the case of the flow in the half-space, the free jet. For the
whole channel flow with a sudden enlargement, with constant mass flow resulting
from a balance between outflow in the core and inflow in the recirculation periphery,
this model is not suitable.

The other approach is based on the radial flow between two plane walls intersecting
at an angle 2α, generated by a source or sink located on the line of intersection. Exact
solutions of the Navier–Stokes equations, known as Jeffery–Hamel (JH) flows, are
available for this problem (Schlichting 1968). Introducing plane polar coordinates
(r, θ) and assuming radial flow

vr(r, θ) =
1

r

dψ

dθ
(6.1)

satisfying mass conservation with a streamfunction ψ(θ), the equations of motion
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reduce to an ordinary differential equation in ψ:

ψ′′′′ + 4ψ′′ + 2Re ψ′ψ′′ = 0. (6.2)

The boundary conditions

ψ(±α) = ± 1
3

(6.3)

normalize the radial volume flux to 2/3 between the walls, whereas

dψ

dθ

∣∣∣∣
θ=±α

= 0 (6.4)

represents the no-slip condition for the velocity. Equation (6.2) can be solved
analytically by Jacobian elliptic functions. Since the integration constants, which
have to be determined from the boundary conditions, appear nonlinearly in the
solution, it will be more convenient for our purpose to integrate equation (6.2)
numerically.

For α = π/2 the JH flow can be looked upon as a sudden expansion flow in the
limits d2 → ∞ and d1 → 0, the flow pattern in the sudden expansion channel at
D →∞ should look similar to the JH flow for

x2 + y2

d2
1

� 1. (6.5)

The (normalized) net volume flux of the JH flow, defined by

QJH =

∫ π/2

−π/2
vr(r, ϑ) r dϑ = 2

3
(6.6)

at r = const., can also be obtained by integration of the horizontal velocity component

uJH = vr cos ϑ (6.7)

along a vertical path, parallel to the wall situated at a distance x from it, as

QJH =

∫ ∞
−∞
uJH dy =

∫ π/2

−π/2
vr(r, ϑ) cos ϑ

r(ϑ)

cos ϑ
dϑ, (6.8)

with r(ϑ) = x/cos ϑ. In figure 15 the comparison of the velocity profiles

uJH (x, y) = vr

( x

cos ϑ
, ϑ
)

cos ϑ, y = x tan ϑ (6.9)

of the JH flow with those of the sudden expansion flow of D = 1000 is presented for
various distances x, at a Reynolds number Re = 1.

When the JH velocity profile is compared with velocity profiles of sudden expansion
flow calculated for finite values of d1 and d2, good agreement can only be expected
within a certain range of x. For r = (x2 + y2)1/2 → 0 the velocity of the JH flow
(equation (6.1)) becomes infinitely large. Therefore the JH flow overpredicts the
velocity of the channel flow with a finite inlet height d1, when condition (6.5) is
violated, i.e. close to the expansion. For D = 1000 and Re = 1 this is the case for
r < 5 (see figure 15). With increasing distance x the no-slip condition for the velocity
on the upper and lower channel walls increasingly influences the velocity profile,
yielding to Poiseuille flow for x → ∞, with its maximum velocity determined by the
given, constant volume flux. Since the JH flow for α = π/2 occupies the infinite
semi-space, uJH (x, 0) decreases with increasing x, with uJH (x, 0) → 0 as x → ∞, and
the value for the maximum velocity of the JH flow eventually falls below that of
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Figure 15. Comparison between the numerical results (D = 1000), and a Jeffery–Hamel flow
(——) for Re = 1. +, x = 5; 5, x = 10; ×, x = 20; 4, x = 50.

the channel flow beyond a certain distance x downstream of the expansion. For
D = 1000 and Re = 1 the approximation of the channel flow by JH flow deteriorates
significantly for x� 50 (see figure 15).

Sobey & Drazin (1986) found the stability limit for Jeffery–Hamel flows to be
Re c = 0 for α = π/2. The Jeffery–Hamel flow at Re = 1 in figure 15 is therefore
already unstable while the corresponding numerical results at D = 1000 are stable
up to the critical point Re c1 = 8.5. According to the stability analysis of Sobey &
Drazin (1986), the Jeffery–Hamel flow loses stability through a subcritical bifurcation
while the symmetric sudden expansion shows a supercritical bifurcation. As pointed
out in the previous paragraph, the two bifurcation points found for the sudden
expansion flow move towards Re = 0 and their distance decreases as D is increased.
A similar behaviour was found e.g. for Taylor–Couette flow (Pfister et al. 1987). There,
the distance between two bifurcation points also decreases with increasing control
parameter (aspect ratio for Taylor–Couette flow) and the first supercritical bifurcation
point becomes subcritical at a certain value of the parameter and eventually merges
with the second bifurcation point to form a higher-order singularity. Within the frame
of the stability calculation of Sobey & Drazin (1986) and the numerical results of our
work, such an effect, caused by the existence of the second bifurcation point, would
possibly explain the subcritical bifurcation in the limiting case D → ∞. Numerical
evidence for this explanation, however, has not been found yet in the case of sudden
expansion flow.

7. Conclusions
A systematic bifurcation analysis was carried out for flow in a channel with a

sudden expansion. The numerical scheme applied confirmed the experimental and
numerical results found by other researchers.

Weak viscous eddies, known as Moffatt eddies, were tracked in the corners of
the expansion in the creeping flow limit, a fact neglected in previous studies. The
numerically computed streamfunction was compared in the regions of the corner
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vortices with an approximation formula derived by Moffatt (1964). The good agree-
ment between both results served as an indicator for the accuracy of the numerical
calculations.

Tracing the branch of unstable symmetric solutions beyond the first bifurcation
point up to higher Reynolds numbers revealed a sequence of further bifurcation
points. In order to answer the question of whether the flows emerging from the
second (and higher) bifurcation points could be observed experimentally, their linear
stability was investigated by a normal mode analysis. For the case of the second
bifurcation point it could be shown that all solution branches intersecting at this
point are unstable. The unstable symmetric branch, in particular, which has one
unstable eigenmode for Re < Rec2, remains unstable as the Reynolds number exceeds
the critical value Rec2 and a second mode becomes unstable through a sign change
of its growth rate at Rec2. Therefore, an exchange of stability with an unstable
branch becoming stable again at the second bifurcation point, as was observed
e.g. in Pfister et al. (1987), does not occur for flows in a channel with a sudden
expansion. Additional modes become unstable for the third and higher bifurcation
points correspondingly.

Further bifurcation or limit points on the (stable) asymmetric branches arising
from the first bifurcation point were not detected. This result is in accordance with
all the publications which considered a sudden expansion with parabolic inflow and
fully developed outflow boundary conditions. Contrasting with that, Sobey & Drazin
(1986), who investigated a smooth expansion and contraction and periodic boundary
conditions, found additional limit points on the non-symmetric solution branches.
It is not clear if the differences are due to the smooth expansion/contraction or
the periodic boundary conditions. For sufficiently long channels (i.e. long enough
for the flow to reach a streamwise-invariant state within the expanded part of the
channel before seeing the effect of contraction downstream), the effect of periodicity
on the bifurcation structure should be minimal. Shapira et al. (1990) provide an
estimate of the dimensionless development length downstream of an expansion as
Le = 8 + 0.08Re; for Re = 100 this yields a length of about 16 compared to a length
of 80 used by Sobey & Drazin (1986). While the numerical results of Sobey & Drazin
indicate that the estimate provided by Shapira et al. might be low, it is nevertheless
clear that a length of 80 is sufficiently long for the flow to reach an invariant state
(as seen in figure 4 of Sobey & Drazin). Calculations carried out by the authors
for a channel with a distance of 80 between a sudden expansion and contraction,
using fully developed inflow and outflow boundary conditions, yielded a bifurcation
structure similar to those shown in figures 6, 12 and 13. The only other effect of
periodicity is to provide a feedback to the inlet profile. This effect can be viewed as
being equivalent to a non-periodic condition at the inlet, but with a different inlet
condition than the parabolic profile that is normally used by all other researchers.
Thus the differences in bifurcation structure (particularly the additional limit points
observed on the non-symmetric branches and the evidence of two-dimensional time-
periodic flows) can be attributed to either the gradual expansion or a non-parabolic
inlet profile.

Shapira et al. (1990), however, considered a gradual slope with fully developed
inflow and outflow boundary conditions and did not find such a complex bifurcation
structure. This might suggest that the gradual expansion (a common feature in both
Sobey and Drazin (1986) and Shapira et al. (1990)) is unlikely to be the cause of
the complex bifurcation observed by Sobey & Drazin (1986), but periodicity (or
non-parabolic inlet profile) is more likely to be the cause of multiplicity of stable,
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non-symmetric solutions, as well as the time-periodic solutions at least over a narrow
range of D.
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